Alternative lactose catabolic pathway in Lactococcus lactis IL1403.
نویسندگان
چکیده
In this study, we present a glimpse of the diversity of Lactococcus lactis subsp. lactis IL1403 beta-galactosidase phenotype-negative mutants isolated by negative selection on solid media containing cellobiose or lactose and X-Gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside), and we identify several genes essential for lactose assimilation. Among these are ccpA (encoding catabolite control protein A), bglS (encoding phospho-beta-glucosidase), and several genes from the Leloir pathway gene cluster encoding proteins presumably essential for lactose metabolism. The functions of these genes were demonstrated by their disruption and testing of the growth of resultant mutants in lactose-containing media. By examining the ccpA and bglS mutants for phospho-beta-galactosidase activity, we showed that expression of bglS is not under strong control of CcpA. Moreover, this analysis revealed that although BglS is homologous to a putative phospho-beta-glucosidase, it also exhibits phospho-beta-galactosidase activity and is the major enzyme in L. lactis IL1403 involved in lactose hydrolysis.
منابع مشابه
Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.
Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glu...
متن کاملDuplication of the pepF gene and shuffling of DNA fragments on the lactose plasmid of Lactococcus lactis.
The gene corresponding to the lactococcal oligopeptidase PepF1 (formerly PepF [V. Monnet, M. Nardi, A. Chopin, M.-C. Chopin, and J.-C. Gripon, J. Biol. Chem. 269:32070-32076, 1994]) is located on the lactose-proteinase plasmid of Lactococcus lactis subsp. cremoris NCDO763. Use of the pepF1 gene as a probe with different strains showed that pepF1 is present on the chromosome of Lactococcus lacti...
متن کاملMolecular physiology of sugar catabolism in Lactococcus lactis IL1403.
The metabolic characteristics of Lactococcus lactis IL1403 were examined on two different growth media with respect to the physiological response to two sugars, glucose and galactose. Analysis of specific metabolic rates indicated that despite significant variations in the rates of both growth and sugar consumption, homolactic fermentation was maintained for all cultures due to the low concentr...
متن کاملIdentification of Lactococcus lactis genes required for bacteriophage adsorption.
The aim of this work was to identify genes in Lactococcus lactis subsp. lactis IL1403 and Lactococcus lactis subsp. cremoris Wg2 important for adsorption of the 936-species phages bIL170 and phi 645, respectively. Random insertional mutagenesis of the two L. lactis strains was carried out with the vector pGh9:ISS1, and integrants that were resistant to phage infection and showed reduced phage a...
متن کاملDNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses.
This report describes the use of an oligonucleotide macroarray to profile the expression of 375 genes in Lactococcus lactis subsp. lactis IL1403 during heat, acid, and osmotic stress. A set of known stress-associated genes in IL1403 was used as the internal control on the array. Every stress response was accurately detected using the macroarray, compared to data from previous reports. As a grou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 10 شماره
صفحات -
تاریخ انتشار 2005